Properties

Label 48510x
Number of curves $4$
Conductor $48510$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("x1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 48510x have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 - 7 T + 19 T^{2}\) 1.19.ah
\(23\) \( 1 + 9 T + 23 T^{2}\) 1.23.j
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 48510x do not have complex multiplication.

Modular form 48510.2.a.x

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} - q^{8} + q^{10} + q^{11} - 2 q^{13} + q^{16} + 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 48510x

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
48510.q3 48510x1 \([1, -1, 0, -220950, -34655580]\) \(13908844989649/1980372240\) \(169848845160881040\) \([2]\) \(589824\) \(2.0319\) \(\Gamma_0(N)\)-optimal
48510.q2 48510x2 \([1, -1, 0, -935370, 313838496]\) \(1055257664218129/115307784900\) \(9889501431975372900\) \([2, 2]\) \(1179648\) \(2.3785\)  
48510.q4 48510x3 \([1, -1, 0, 1247580, 1559429766]\) \(2503876820718671/13702874328990\) \(-1175242377747950147790\) \([2]\) \(2359296\) \(2.7250\)  
48510.q1 48510x4 \([1, -1, 0, -14549040, 21363295050]\) \(3971101377248209009/56495958750\) \(4845439234163508750\) \([2]\) \(2359296\) \(2.7250\)