Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-x^2-5372933x+4773660581\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-x^2z-5372933xz^2+4773660581z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-85966923x+305428310278\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(5643/4, -5647/8)$ | $0$ | $2$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 48510 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11$ |
|
| Discriminant: | $\Delta$ | = | $88106467303053322200$ | = | $2^{3} \cdot 3^{10} \cdot 5^{2} \cdot 7^{14} \cdot 11 $ |
|
| j-invariant: | $j$ | = | \( \frac{200005594092187129}{1027287538200} \) | = | $2^{-3} \cdot 3^{-4} \cdot 5^{-2} \cdot 7^{-8} \cdot 11^{-1} \cdot 584809^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.6730671515783893457835346084$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.1508059327166778475332356182$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.973105158996098$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.385246807318771$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.19221283401809428352217502177$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 96 $ = $ 3\cdot2^{2}\cdot2\cdot2^{2}\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $4.6131080164342628045322005226 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 4.613108016 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.192213 \cdot 1.000000 \cdot 96}{2^2} \\ & \approx 4.613108016\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 2359296 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $3$ | $4$ | $I_{4}^{*}$ | additive | -1 | 2 | 10 | 4 |
| $5$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $7$ | $4$ | $I_{8}^{*}$ | additive | -1 | 2 | 14 | 8 |
| $11$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1848 = 2^{3} \cdot 3 \cdot 7 \cdot 11 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 960 & 833 \\ 91 & 78 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1841 & 8 \\ 1840 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 1842 & 1843 \end{array}\right),\left(\begin{array}{rr} 1688 & 1323 \\ 1253 & 1058 \end{array}\right),\left(\begin{array}{rr} 263 & 0 \\ 0 & 1847 \end{array}\right),\left(\begin{array}{rr} 1231 & 784 \\ 700 & 1287 \end{array}\right),\left(\begin{array}{rr} 232 & 371 \\ 763 & 792 \end{array}\right)$.
The torsion field $K:=\Q(E[1848])$ is a degree-$40874803200$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1848\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 4851 = 3^{2} \cdot 7^{2} \cdot 11 \) |
| $3$ | additive | $8$ | \( 2695 = 5 \cdot 7^{2} \cdot 11 \) |
| $5$ | nonsplit multiplicative | $6$ | \( 9702 = 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
| $7$ | additive | $32$ | \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \) |
| $11$ | nonsplit multiplicative | $12$ | \( 4410 = 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 48510da
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 2310c3, its twist by $21$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{22}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{231}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{42}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{22}, \sqrt{42})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.98701204783104.49 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 |
|---|---|---|---|---|---|
| Reduction type | split | add | nonsplit | add | nonsplit |
| $\lambda$-invariant(s) | 6 | - | 0 | - | 0 |
| $\mu$-invariant(s) | 0 | - | 0 | - | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.