Show commands: SageMath
Rank
The elliptic curves in class 48510d have rank \(0\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 48510d do not have complex multiplication.Modular form 48510.2.a.d
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 48510d
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
48510.k2 | 48510d1 | \([1, -1, 0, -525975, -146691875]\) | \(5066026756449723/11000000\) | \(34941753000000\) | \([2]\) | \(497664\) | \(1.8456\) | \(\Gamma_0(N)\)-optimal |
48510.k3 | 48510d2 | \([1, -1, 0, -520095, -150136379]\) | \(-4898016158612283/236328125000\) | \(-750701724609375000\) | \([2]\) | \(995328\) | \(2.1921\) | |
48510.k1 | 48510d3 | \([1, -1, 0, -691350, -46693900]\) | \(15781142246787/8722841600\) | \(20199355779494707200\) | \([2]\) | \(1492992\) | \(2.3949\) | |
48510.k4 | 48510d4 | \([1, -1, 0, 2695530, -371157004]\) | \(935355271080573/566899520000\) | \(-1312760866333371840000\) | \([2]\) | \(2985984\) | \(2.7414\) |