Properties

Label 48510d
Number of curves $4$
Conductor $48510$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 48510d have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 48510d do not have complex multiplication.

Modular form 48510.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} - q^{8} + q^{10} - q^{11} + 4 q^{13} + q^{16} - 6 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 48510d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
48510.k2 48510d1 \([1, -1, 0, -525975, -146691875]\) \(5066026756449723/11000000\) \(34941753000000\) \([2]\) \(497664\) \(1.8456\) \(\Gamma_0(N)\)-optimal
48510.k3 48510d2 \([1, -1, 0, -520095, -150136379]\) \(-4898016158612283/236328125000\) \(-750701724609375000\) \([2]\) \(995328\) \(2.1921\)  
48510.k1 48510d3 \([1, -1, 0, -691350, -46693900]\) \(15781142246787/8722841600\) \(20199355779494707200\) \([2]\) \(1492992\) \(2.3949\)  
48510.k4 48510d4 \([1, -1, 0, 2695530, -371157004]\) \(935355271080573/566899520000\) \(-1312760866333371840000\) \([2]\) \(2985984\) \(2.7414\)