Properties

Label 485100ia
Number of curves $2$
Conductor $485100$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ia1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 485100ia have rank \(0\).

Complex multiplication

The elliptic curves in class 485100ia do not have complex multiplication.

Modular form 485100.2.a.ia

Copy content sage:E.q_eigenform(10)
 
\(q + q^{11} + 4 q^{13} + 3 q^{17} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 485100ia

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
485100.ia1 485100ia1 \([0, 0, 0, -60729375, 182159153750]\) \(-2888047810000/35937\) \(-308217709037700000000\) \([]\) \(39191040\) \(3.0786\) \(\Gamma_0(N)\)-optimal
485100.ia2 485100ia2 \([0, 0, 0, -27654375, 378909098750]\) \(-272709010000/7073843073\) \(-60669608093392983300000000\) \([]\) \(117573120\) \(3.6279\)