Properties

Label 48510.v
Number of curves $4$
Conductor $48510$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("v1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 48510.v have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 48510.v do not have complex multiplication.

Modular form 48510.2.a.v

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} - q^{8} + q^{10} + q^{11} + 4 q^{13} + q^{16} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 48510.v

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
48510.v1 48510bc3 \([1, -1, 0, -10699110, -13467387200]\) \(1579250141304807889/41926500\) \(3595873272106500\) \([2]\) \(1990656\) \(2.4990\)  
48510.v2 48510bc4 \([1, -1, 0, -10685880, -13502364674]\) \(-1573398910560073969/8138108343750\) \(-697973984921172093750\) \([2]\) \(3981312\) \(2.8455\)  
48510.v3 48510bc1 \([1, -1, 0, -141570, -15636524]\) \(3658671062929/880165440\) \(75488375627058240\) \([2]\) \(663552\) \(1.9497\) \(\Gamma_0(N)\)-optimal
48510.v4 48510bc2 \([1, -1, 0, 334710, -98604500]\) \(48351870250991/76871856600\) \(-6593000954650248600\) \([2]\) \(1327104\) \(2.2962\)