Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2+700740x+28094800\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z+700740xz^2+28094800z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+11211837x+1809279038\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-40, 20)$ | $0$ | $2$ |
Integral points
\( \left(-40, 20\right) \)
Invariants
Conductor: | $N$ | = | \( 48510 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11$ |
|
Discriminant: | $\Delta$ | = | $-22366926111720960000$ | = | $-1 \cdot 2^{12} \cdot 3^{9} \cdot 5^{4} \cdot 7^{9} \cdot 11 $ |
|
j-invariant: | $j$ | = | \( \frac{443688652450511}{260789760000} \) | = | $2^{-12} \cdot 3^{-3} \cdot 5^{-4} \cdot 7^{-3} \cdot 11^{-1} \cdot 13^{3} \cdot 5867^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.4022295251691411080603979072$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.87996830630742960981009891702$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9990919448660593$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.8188662302560115$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.13013125709341691385359289657$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2\cdot2\cdot2^{2}\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.0410500567473353108287431725 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.041050057 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.130131 \cdot 1.000000 \cdot 32}{2^2} \\ & \approx 1.041050057\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 1327104 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{12}$ | nonsplit multiplicative | 1 | 1 | 12 | 12 |
$3$ | $2$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
$5$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$7$ | $4$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
$11$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.1 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 9240 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \), index $384$, genus $5$, and generators
$\left(\begin{array}{rr} 1929 & 388 \\ 8900 & 7349 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 12 & 145 \end{array}\right),\left(\begin{array}{rr} 15 & 106 \\ 7934 & 11 \end{array}\right),\left(\begin{array}{rr} 3697 & 24 \\ 7404 & 289 \end{array}\right),\left(\begin{array}{rr} 7904 & 9237 \\ 3099 & 86 \end{array}\right),\left(\begin{array}{rr} 3376 & 21 \\ 2235 & 8866 \end{array}\right),\left(\begin{array}{rr} 9217 & 24 \\ 9216 & 25 \end{array}\right),\left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 9224 & 4599 \\ 1825 & 3454 \end{array}\right),\left(\begin{array}{rr} 6937 & 24 \\ 7422 & 1687 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 24 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[9240])$ is a degree-$2452488192000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/9240\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 4851 = 3^{2} \cdot 7^{2} \cdot 11 \) |
$3$ | additive | $2$ | \( 2695 = 5 \cdot 7^{2} \cdot 11 \) |
$5$ | nonsplit multiplicative | $6$ | \( 9702 = 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
$7$ | additive | $32$ | \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \) |
$11$ | split multiplicative | $12$ | \( 4410 = 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3, 4, 6 and 12.
Its isogeny class 48510.s
consists of 8 curves linked by isogenies of
degrees dividing 12.
Twists
The minimal quadratic twist of this elliptic curve is 2310.u8, its twist by $21$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-231}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{77}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-3}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{21}) \) | \(\Z/6\Z\) | not in database |
$4$ | \(\Q(\sqrt{-3}, \sqrt{77})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-11}, \sqrt{21})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$4$ | \(\Q(\sqrt{21}, \sqrt{33})\) | \(\Z/12\Z\) | not in database |
$4$ | \(\Q(\sqrt{-3}, \sqrt{-7})\) | \(\Z/12\Z\) | not in database |
$6$ | 6.0.28247979375.3 | \(\Z/6\Z\) | not in database |
$8$ | 8.0.38896618261729536.5 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.2847396321.1 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/24\Z\) | not in database |
$16$ | deg 16 | \(\Z/24\Z\) | not in database |
$18$ | 18.6.9051769158414792923789280443435349614400000000.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 |
---|---|---|---|---|---|
Reduction type | nonsplit | add | nonsplit | add | split |
$\lambda$-invariant(s) | 6 | - | 0 | - | 5 |
$\mu$-invariant(s) | 0 | - | 0 | - | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.