Properties

Label 48510.em
Number of curves $2$
Conductor $48510$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("em1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 48510.em have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 48510.em do not have complex multiplication.

Modular form 48510.2.a.em

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + q^{5} + q^{8} + q^{10} + q^{11} + 6 q^{13} + q^{16} + 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 48510.em

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
48510.em1 48510el2 \([1, -1, 1, -42972181097, 3428487964812201]\) \(298315634894429753085191407/22212303505611816960\) \(653436646781802354440475770880\) \([2]\) \(171601920\) \(4.7708\)  
48510.em2 48510el1 \([1, -1, 1, -2510254697, 60874200081321]\) \(-59465789423385795028207/20003531867239219200\) \(-588459489751677219779484057600\) \([2]\) \(85800960\) \(4.4242\) \(\Gamma_0(N)\)-optimal