Properties

Label 48510.dp
Number of curves $4$
Conductor $48510$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dp1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 48510.dp have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 48510.dp do not have complex multiplication.

Modular form 48510.2.a.dp

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + q^{5} + q^{8} + q^{10} - q^{11} + 2 q^{13} + q^{16} - 2 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 48510.dp

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
48510.dp1 48510dt4 \([1, -1, 1, -706712, 228845999]\) \(455129268177961/4392300\) \(376710533268300\) \([2]\) \(589824\) \(1.9583\)  
48510.dp2 48510dt2 \([1, -1, 1, -45212, 3406799]\) \(119168121961/10890000\) \(933993057690000\) \([2, 2]\) \(294912\) \(1.6117\)  
48510.dp3 48510dt1 \([1, -1, 1, -9932, -318769]\) \(1263214441/211200\) \(18113804755200\) \([2]\) \(147456\) \(1.2651\) \(\Gamma_0(N)\)-optimal
48510.dp4 48510dt3 \([1, -1, 1, 51808, 15980591]\) \(179310732119/1392187500\) \(-119402521579687500\) \([2]\) \(589824\) \(1.9583\)