Properties

Label 48400.cm
Number of curves $2$
Conductor $48400$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cm1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 48400.cm have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 48400.cm do not have complex multiplication.

Modular form 48400.2.a.cm

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{7} - 2 q^{9} - 4 q^{13} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 48400.cm

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
48400.cm1 48400bu1 \([0, 1, 0, -29404008, 62354215988]\) \(-1693700041/32000\) \(-53119845582848000000000\) \([]\) \(3649536\) \(3.1552\) \(\Gamma_0(N)\)-optimal
48400.cm2 48400bu2 \([0, 1, 0, 117005992, 291632275988]\) \(106718863559/83886080\) \(-139250488004701061120000000\) \([]\) \(10948608\) \(3.7045\)