Properties

Label 48400.cl
Number of curves $2$
Conductor $48400$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cl1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 48400.cl have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 48400.cl do not have complex multiplication.

Modular form 48400.2.a.cl

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{7} - 2 q^{9} + 4 q^{13} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 48400.cl

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
48400.cl1 48400bw1 \([0, 1, 0, -243008, -46936012]\) \(-1693700041/32000\) \(-29984768000000000\) \([]\) \(331776\) \(1.9562\) \(\Gamma_0(N)\)-optimal
48400.cl2 48400bw2 \([0, 1, 0, 966992, -218756012]\) \(106718863559/83886080\) \(-78603270225920000000\) \([]\) \(995328\) \(2.5056\)