Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3+x^2-5654030x+6093066827\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3+x^2z-5654030xz^2+6093066827z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-7327622907x+284388040232406\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(17, 77431)$ | $0.44110316175329690427520940256$ | $\infty$ |
| $(6417, 480631)$ | $1.2352457927090264796036260845$ | $\infty$ |
| $(-2799, 1399)$ | $0$ | $2$ |
Integral points
\( \left(-2799, 1399\right) \), \( \left(-2403, 77431\right) \), \( \left(-2403, -75029\right) \), \( \left(-863, 102071\right) \), \( \left(-863, -101209\right) \), \( \left(17, 77431\right) \), \( \left(17, -77449\right) \), \( \left(117, 73651\right) \), \( \left(117, -73769\right) \), \( \left(1297, 30071\right) \), \( \left(1297, -31369\right) \), \( \left(1557, 31891\right) \), \( \left(1557, -33449\right) \), \( \left(1601, 33079\right) \), \( \left(1601, -34681\right) \), \( \left(2385, 77431\right) \), \( \left(2385, -79817\right) \), \( \left(3537, 172471\right) \), \( \left(3537, -176009\right) \), \( \left(5825, 410423\right) \), \( \left(5825, -416249\right) \), \( \left(6417, 480631\right) \), \( \left(6417, -487049\right) \), \( \left(10657, 1069991\right) \), \( \left(10657, -1080649\right) \), \( \left(16605, 2110891\right) \), \( \left(16605, -2127497\right) \), \( \left(42257, 8652151\right) \), \( \left(42257, -8694409\right) \), \( \left(2284497, 3451771831\right) \), \( \left(2284497, -3454056329\right) \)
Invariants
| Conductor: | $N$ | = | \( 482790 \) | = | $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 19$ |
|
| Discriminant: | $\Delta$ | = | $-4482710603323932672000$ | = | $-1 \cdot 2^{28} \cdot 3^{4} \cdot 5^{3} \cdot 7^{2} \cdot 11^{6} \cdot 19 $ |
|
| j-invariant: | $j$ | = | \( -\frac{11283450590382195961}{2530373271552000} \) | = | $-1 \cdot 2^{-28} \cdot 3^{-4} \cdot 5^{-3} \cdot 7^{-2} \cdot 19^{-1} \cdot 2242921^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.8747475336837490339526749273$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.6757998972845637619217031383$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9818688900618688$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.476445680217815$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.53396406659321712172850016438$ |
|
| Real period: | $\Omega$ | ≈ | $0.13165334041246727684325946487$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 1344 $ = $ ( 2^{2} \cdot 7 )\cdot2\cdot3\cdot2\cdot2^{2}\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $23.620179417146645726601848358 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 23.620179417 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.131653 \cdot 0.533964 \cdot 1344}{2^2} \\ & \approx 23.620179417\end{aligned}$$
Modular invariants
Modular form 482790.2.a.fw
For more coefficients, see the Downloads section to the right.
| Modular degree: | 34406400 |
|
| $ \Gamma_0(N) $-optimal: | not computed* (one of 3 curves in this isogeny class which might be optimal) | |
| Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 6 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $28$ | $I_{28}$ | split multiplicative | -1 | 1 | 28 | 28 |
| $3$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
| $5$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $7$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $11$ | $4$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $19$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 25080 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \cdot 19 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 25073 & 8 \\ 25072 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 2003 & 13398 \\ 13970 & 12827 \end{array}\right),\left(\begin{array}{rr} 17788 & 15961 \\ 5951 & 4566 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 25074 & 25075 \end{array}\right),\left(\begin{array}{rr} 16721 & 2288 \\ 5324 & 9153 \end{array}\right),\left(\begin{array}{rr} 15368 & 22803 \\ 16445 & 15962 \end{array}\right),\left(\begin{array}{rr} 15959 & 0 \\ 0 & 25079 \end{array}\right),\left(\begin{array}{rr} 8273 & 19668 \\ 1430 & 287 \end{array}\right)$.
The torsion field $K:=\Q(E[25080])$ is a degree-$1198215659520000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/25080\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 11495 = 5 \cdot 11^{2} \cdot 19 \) |
| $3$ | nonsplit multiplicative | $4$ | \( 32186 = 2 \cdot 7 \cdot 11^{2} \cdot 19 \) |
| $5$ | split multiplicative | $6$ | \( 96558 = 2 \cdot 3 \cdot 7 \cdot 11^{2} \cdot 19 \) |
| $7$ | split multiplicative | $8$ | \( 34485 = 3 \cdot 5 \cdot 11^{2} \cdot 19 \) |
| $11$ | additive | $62$ | \( 3990 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 19 \) |
| $19$ | split multiplicative | $20$ | \( 25410 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 482790.fw
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 3990.g4, its twist by $-11$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.