Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-8477x-497765\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-8477xz^2-497765z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-686664x-360810720\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(23209/25, 3519152/125)$ | $7.7916896103449624671507202545$ | $\infty$ |
| $(113, 0)$ | $0$ | $2$ |
Integral points
\( \left(113, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 480896 \) | = | $2^{7} \cdot 13 \cdot 17^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-66834418253824$ | = | $-1 \cdot 2^{14} \cdot 13^{2} \cdot 17^{6} $ |
|
| j-invariant: | $j$ | = | \( -\frac{170368}{169} \) | = | $-1 \cdot 2^{7} \cdot 11^{3} \cdot 13^{-2}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.3485766025521484289611826099$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.87670178012922913881702217407$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.7935250407803479$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.0380105339750263$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $7.7916896103449624671507202545$ |
|
| Real period: | $\Omega$ | ≈ | $0.23918051448502534332788586239$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2\cdot2\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $7.4544813188397390742628160890 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.454481319 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.239181 \cdot 7.791690 \cdot 16}{2^2} \\ & \approx 7.454481319\end{aligned}$$
Modular invariants
Modular form 480896.2.a.g
For more coefficients, see the Downloads section to the right.
| Modular degree: | 983040 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $III^{*}$ | additive | 1 | 7 | 14 | 0 |
| $13$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $17$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.6.0.5 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3536 = 2^{4} \cdot 13 \cdot 17 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 2211 & 3332 \\ 1105 & 1 \end{array}\right),\left(\begin{array}{rr} 3265 & 1666 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 8 \\ 48 & 77 \end{array}\right),\left(\begin{array}{rr} 3529 & 8 \\ 3528 & 9 \end{array}\right),\left(\begin{array}{rr} 3 & 8 \\ 10 & 27 \end{array}\right),\left(\begin{array}{rr} 2651 & 1870 \\ 0 & 3535 \end{array}\right),\left(\begin{array}{rr} 1663 & 0 \\ 0 & 3535 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[3536])$ is a degree-$1051151302656$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3536\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 289 = 17^{2} \) |
| $13$ | nonsplit multiplicative | $14$ | \( 36992 = 2^{7} \cdot 17^{2} \) |
| $17$ | additive | $146$ | \( 1664 = 2^{7} \cdot 13 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 480896g
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 1664e2, its twist by $-68$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.