Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2+xy+y=x^3+x^2-12025013x-10463431469\) | (homogenize, simplify) | 
| \(y^2z+xyz+yz^2=x^3+x^2z-12025013xz^2-10463431469z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3-15584416875x-487948092356250\) | (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(-125365780693411776679/133503080047617289, 85922493905889248615618667606/48779453245556079958292837)$ | $46.998021972176149681224819422$ | $\infty$ | 
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 48050 \) | = | $2 \cdot 5^{2} \cdot 31^{2}$ |  | 
| Discriminant: | $\Delta$ | = | $64033459920375078125000$ | = | $2^{3} \cdot 5^{10} \cdot 31^{10} $ |  | 
| j-invariant: | $j$ | = | \( \frac{24025}{8} \) | = | $2^{-3} \cdot 5^{2} \cdot 31^{2}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.0788079224978644783721189526$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.1240463416015077054028174289$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $0.8809241450872604$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.614203703072803$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 1$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $46.998021972176149681224819422$ |  | 
| Real period: | $\Omega$ | ≈ | $0.083242559204817245973767245979$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 3 $ = $ 3\cdot1\cdot1 $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |  | 
| Special value: | $ L'(E,1)$ | ≈ | $11.736706879584524774363724833 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |  | 
BSD formula
$$\begin{aligned} 11.736706880 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.083243 \cdot 46.998022 \cdot 3}{1^2} \\ & \approx 11.736706880\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 4017600 |  | 
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 | 
| $5$ | $1$ | $II^{*}$ | additive | 1 | 2 | 10 | 0 | 
| $31$ | $1$ | $II^{*}$ | additive | -1 | 2 | 10 | 0 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2G | 8.2.0.2 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 8.2.0.b.1, level \( 8 = 2^{3} \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 7 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 7 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 2 \\ 5 & 3 \end{array}\right),\left(\begin{array}{rr} 7 & 2 \\ 6 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[8])$ is a degree-$768$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/8\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 24025 = 5^{2} \cdot 31^{2} \) | 
| $3$ | good | $2$ | \( 24025 = 5^{2} \cdot 31^{2} \) | 
| $5$ | additive | $2$ | \( 1922 = 2 \cdot 31^{2} \) | 
| $31$ | additive | $212$ | \( 50 = 2 \cdot 5^{2} \) | 
Isogenies
This curve has no rational isogenies. Its isogeny class 48050w consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 48050h1, its twist by $-155$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $3$ | 3.3.192200.1 | \(\Z/2\Z\) | not in database | 
| $6$ | 6.6.295526720000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/3\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/4\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | ord | add | ord | ord | ss | ord | ord | ord | ord | add | ord | ord | ord | ord | 
| $\lambda$-invariant(s) | 4 | 1 | - | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | - | 1 | 1 | 1 | 1 | 
| $\mu$-invariant(s) | 0 | 0 | - | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.
