Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-x^2-16517x-4068859\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-x^2z-16517xz^2-4068859z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-264275x-260671250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(194, -97)$ | $0$ | $2$ |
Integral points
\( \left(194, -97\right) \)
Invariants
| Conductor: | $N$ | = | \( 48050 \) | = | $2 \cdot 5^{2} \cdot 31^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-6878153527750000$ | = | $-1 \cdot 2^{4} \cdot 5^{6} \cdot 31^{7} $ |
|
| j-invariant: | $j$ | = | \( -\frac{35937}{496} \) | = | $-1 \cdot 2^{-4} \cdot 3^{3} \cdot 11^{3} \cdot 31^{-1}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.7204876923806434738099102325$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.80122486607897983645505159638$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9309010010327436$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.078193979692736$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.17984950918052980503804815808$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2^{2}\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.4387960734442384403043852646 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.438796073 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.179850 \cdot 1.000000 \cdot 32}{2^2} \\ & \approx 1.438796073\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 245760 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
| $5$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $31$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.12.0.9 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1240 = 2^{3} \cdot 5 \cdot 31 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 743 & 0 \\ 0 & 1239 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 841 & 840 \\ 230 & 351 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 224 & 245 \\ 915 & 494 \end{array}\right),\left(\begin{array}{rr} 1233 & 8 \\ 1232 & 9 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 1234 & 1235 \end{array}\right),\left(\begin{array}{rr} 411 & 1150 \\ 1090 & 1211 \end{array}\right)$.
The torsion field $K:=\Q(E[1240])$ is a degree-$13713408000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1240\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 24025 = 5^{2} \cdot 31^{2} \) |
| $5$ | additive | $14$ | \( 1922 = 2 \cdot 31^{2} \) |
| $31$ | additive | $512$ | \( 50 = 2 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 48050.h
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 62.a4, its twist by $-155$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-31}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{5}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-155}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{5}, \sqrt{-31})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.142000588960000.13 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.4.2272009423360000.4 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.2364213760000.26 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 5 | 31 |
|---|---|---|---|
| Reduction type | nonsplit | add | add |
| $\lambda$-invariant(s) | 16 | - | - |
| $\mu$-invariant(s) | 0 | - | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.