Properties

Label 479808rk
Number of curves $2$
Conductor $479808$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("rk1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 479808rk have rank \(0\).

Complex multiplication

The elliptic curves in class 479808rk do not have complex multiplication.

Modular form 479808.2.a.rk

Copy content sage:E.q_eigenform(10)
 
\(q + 3 q^{5} + 3 q^{11} + 5 q^{13} + q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 479808rk

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
479808.rk1 479808rk1 \([0, 0, 0, -527436, 147511952]\) \(-19486825371/11662\) \(-9711022565228544\) \([]\) \(4423680\) \(2.0117\) \(\Gamma_0(N)\)-optimal
479808.rk2 479808rk2 \([0, 0, 0, 460404, 610040592]\) \(17779581/275128\) \(-167014526127748153344\) \([]\) \(13271040\) \(2.5610\)