Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-1982567244x+33934881170288\)
|
(homogenize, simplify) |
\(y^2z=x^3-1982567244xz^2+33934881170288z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1982567244x+33934881170288\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(26446, 0)$ | $0$ | $2$ |
Integral points
\( \left(26446, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 479808 \) | = | $2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 17$ |
|
Discriminant: | $\Delta$ | = | $1247101169810717006383546368$ | = | $2^{42} \cdot 3^{10} \cdot 7^{10} \cdot 17 $ |
|
j-invariant: | $j$ | = | \( \frac{38331145780597164097}{55468445663232} \) | = | $2^{-24} \cdot 3^{-4} \cdot 7^{-4} \cdot 17^{-1} \cdot 431^{3} \cdot 7823^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $4.1013901881847292607851061113$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.5394081984830997984089589389$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0214246831520672$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.797397686178165$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.048418064237581323667342208932$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2^{2}\cdot2\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $4.8418064237581323667342208932 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $25$ = $5^2$ (exact) |
|
BSD formula
$$\begin{aligned} 4.841806424 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{25 \cdot 0.048418 \cdot 1.000000 \cdot 16}{2^2} \\ & \approx 4.841806424\end{aligned}$$
Modular invariants
Modular form 479808.2.a.ox
For more coefficients, see the Downloads section to the right.
Modular degree: | 283115520 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{32}^{*}$ | additive | 1 | 6 | 42 | 24 |
$3$ | $2$ | $I_{4}^{*}$ | additive | -1 | 2 | 10 | 4 |
$7$ | $2$ | $I_{4}^{*}$ | additive | -1 | 2 | 10 | 4 |
$17$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 16.48.0.102 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 5712 = 2^{4} \cdot 3 \cdot 7 \cdot 17 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 1903 & 0 \\ 0 & 5711 \end{array}\right),\left(\begin{array}{rr} 568 & 273 \\ 5439 & 2458 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2017 & 4368 \\ 3234 & 1471 \end{array}\right),\left(\begin{array}{rr} 5697 & 16 \\ 5696 & 17 \end{array}\right),\left(\begin{array}{rr} 5711 & 1344 \\ 4284 & 4283 \end{array}\right),\left(\begin{array}{rr} 2447 & 0 \\ 0 & 5711 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 5614 & 5699 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 5708 & 5709 \end{array}\right)$.
The torsion field $K:=\Q(E[5712])$ is a degree-$970293510144$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/5712\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 7497 = 3^{2} \cdot 7^{2} \cdot 17 \) |
$3$ | additive | $8$ | \( 53312 = 2^{6} \cdot 7^{2} \cdot 17 \) |
$7$ | additive | $32$ | \( 9792 = 2^{6} \cdot 3^{2} \cdot 17 \) |
$17$ | split multiplicative | $18$ | \( 28224 = 2^{6} \cdot 3^{2} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 479808ox
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 714g1, its twist by $168$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.