Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-387193879884x-92734389270274192\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-387193879884xz^2-92734389270274192z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-387193879884x-92734389270274192\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-359324, 0)$ | $0$ | $2$ |
Integral points
\( \left(-359324, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 479808 \) | = | $2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 17$ |
|
| Discriminant: | $\Delta$ | = | $403369601585106552706100625408$ | = | $2^{21} \cdot 3^{14} \cdot 7^{8} \cdot 17^{8} $ |
|
| j-invariant: | $j$ | = | \( \frac{285531136548675601769470657}{17941034271597192} \) | = | $2^{-3} \cdot 3^{-8} \cdot 7^{-2} \cdot 17^{-8} \cdot 658492993^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $5.1411109590246472249109542935$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.5791289693230177625348071211$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0624727966937526$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $7.007047402743213$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.0060522580296976654584177761165$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 128 $ = $ 2\cdot2\cdot2^{2}\cdot2^{3} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $4.8418064237581323667342208932 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $25$ = $5^2$ (exact) |
|
BSD formula
$$\begin{aligned} 4.841806424 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{25 \cdot 0.006052 \cdot 1.000000 \cdot 128}{2^2} \\ & \approx 4.841806424\end{aligned}$$
Modular invariants
Modular form 479808.2.a.ox
For more coefficients, see the Downloads section to the right.
| Modular degree: | 2264924160 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{11}^{*}$ | additive | 1 | 6 | 21 | 3 |
| $3$ | $2$ | $I_{8}^{*}$ | additive | -1 | 2 | 14 | 8 |
| $7$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
| $17$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.48.0.217 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 5712 = 2^{4} \cdot 3 \cdot 7 \cdot 17 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 3991 & 4368 \\ 798 & 841 \end{array}\right),\left(\begin{array}{rr} 2447 & 0 \\ 0 & 5711 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2689 & 4368 \\ 840 & 673 \end{array}\right),\left(\begin{array}{rr} 1903 & 0 \\ 0 & 5711 \end{array}\right),\left(\begin{array}{rr} 2372 & 2919 \\ 2037 & 2582 \end{array}\right),\left(\begin{array}{rr} 5697 & 16 \\ 5696 & 17 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 5614 & 5699 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 5708 & 5709 \end{array}\right)$.
The torsion field $K:=\Q(E[5712])$ is a degree-$970293510144$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/5712\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 441 = 3^{2} \cdot 7^{2} \) |
| $3$ | additive | $8$ | \( 53312 = 2^{6} \cdot 7^{2} \cdot 17 \) |
| $7$ | additive | $32$ | \( 9792 = 2^{6} \cdot 3^{2} \cdot 17 \) |
| $17$ | split multiplicative | $18$ | \( 28224 = 2^{6} \cdot 3^{2} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 479808.ox
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 714.f1, its twist by $168$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.