Properties

Label 479808.dx
Number of curves $4$
Conductor $479808$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dx1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 479808.dx have rank \(1\).

Complex multiplication

The elliptic curves in class 479808.dx do not have complex multiplication.

Modular form 479808.2.a.dx

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} - 2 q^{13} + q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 479808.dx

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
479808.dx1 479808dx3 \([0, 0, 0, -14921676, 22176168336]\) \(16342588257633/8185058\) \(184025264900018798592\) \([2]\) \(18874368\) \(2.8411\) \(\Gamma_0(N)\)-optimal*
479808.dx2 479808dx2 \([0, 0, 0, -1091916, 220041360]\) \(6403769793/2775556\) \(62403031004158623744\) \([2, 2]\) \(9437184\) \(2.4945\) \(\Gamma_0(N)\)-optimal*
479808.dx3 479808dx1 \([0, 0, 0, -527436, -145064304]\) \(721734273/13328\) \(299654410584195072\) \([2]\) \(4718592\) \(2.1480\) \(\Gamma_0(N)\)-optimal*
479808.dx4 479808dx4 \([0, 0, 0, 3706164, 1630676880]\) \(250404380127/196003234\) \(-4406755218852495753216\) \([2]\) \(18874368\) \(2.8411\)  
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 3 curves highlighted, and conditionally curve 479808.dx1.