Properties

Label 479408.q
Number of curves $4$
Conductor $479408$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("q1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 479408.q have rank \(0\).

Complex multiplication

The elliptic curves in class 479408.q do not have complex multiplication.

Modular form 479408.2.a.q

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} - 3 q^{9} - 4 q^{11} - 2 q^{13} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 479408.q

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
479408.q1 479408q3 \([0, 0, 0, -10270811, 12668614154]\) \(621808094281977/43266572\) \(8337465334128361472\) \([2]\) \(11059200\) \(2.6840\) \(\Gamma_0(N)\)-optimal*
479408.q2 479408q2 \([0, 0, 0, -682651, 171406410]\) \(182573756217/39790864\) \(7667696650777329664\) \([2, 2]\) \(5529600\) \(2.3374\) \(\Gamma_0(N)\)-optimal*
479408.q3 479408q1 \([0, 0, 0, -220571, -37546166]\) \(6158676537/403712\) \(77795273565274112\) \([2]\) \(2764800\) \(1.9908\) \(\Gamma_0(N)\)-optimal*
479408.q4 479408q4 \([0, 0, 0, 1512229, 1047163530]\) \(1984699888263/3606832396\) \(-695036345094802948096\) \([4]\) \(11059200\) \(2.6840\)  
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 3 curves highlighted, and conditionally curve 479408.q1.