Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3+x^2-696524x-118982419\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3+x^2z-696524xz^2-118982419z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-902695131x-5537703305610\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(2575, 121877)$ | $5.9864824531352157414866511320$ | $\infty$ |
| $(-179, 89)$ | $0$ | $2$ |
| $(909, -455)$ | $0$ | $2$ |
Integral points
\( \left(-179, 89\right) \), \( \left(909, -455\right) \), \( \left(2575, 121877\right) \), \( \left(2575, -124453\right) \)
Invariants
| Conductor: | $N$ | = | \( 4794 \) | = | $2 \cdot 3 \cdot 17 \cdot 47$ |
|
| Discriminant: | $\Delta$ | = | $15540654858358857984$ | = | $2^{8} \cdot 3^{16} \cdot 17^{2} \cdot 47^{4} $ |
|
| j-invariant: | $j$ | = | \( \frac{37370766650444353872577}{15540654858358857984} \) | = | $2^{-8} \cdot 3^{-16} \cdot 13^{3} \cdot 17^{-2} \cdot 47^{-4} \cdot 349^{3} \cdot 7369^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.3796863546456223494231191870$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.3796863546456223494231191870$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0160570646412839$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.132676961065652$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $5.9864824531352157414866511320$ |
|
| Real period: | $\Omega$ | ≈ | $0.17145606692273066477184116050$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2^{3}\cdot2\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $4.1056749444660175628919770460 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.105674944 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.171456 \cdot 5.986482 \cdot 64}{4^2} \\ & \approx 4.105674944\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 114688 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
| $3$ | $2$ | $I_{16}$ | nonsplit multiplicative | 1 | 1 | 16 | 16 |
| $17$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $47$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 8.48.0.34 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 6392 = 2^{3} \cdot 17 \cdot 47 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 5 & 4 \\ 6388 & 6389 \end{array}\right),\left(\begin{array}{rr} 7 & 4800 \\ 22 & 1617 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 2639 & 6 \\ 4130 & 6387 \end{array}\right),\left(\begin{array}{rr} 6385 & 8 \\ 6384 & 9 \end{array}\right),\left(\begin{array}{rr} 2449 & 8 \\ 3404 & 33 \end{array}\right),\left(\begin{array}{rr} 3201 & 4796 \\ 4816 & 3205 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[6392])$ is a degree-$2991617998848$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/6392\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 1 \) |
| $3$ | nonsplit multiplicative | $4$ | \( 1598 = 2 \cdot 17 \cdot 47 \) |
| $17$ | split multiplicative | $18$ | \( 282 = 2 \cdot 3 \cdot 47 \) |
| $47$ | nonsplit multiplicative | $48$ | \( 102 = 2 \cdot 3 \cdot 17 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 4794.c
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-17}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{17}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-1}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(i, \sqrt{17})\) | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $4$ | 4.2.19652.1 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.319794774016.3 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.6179217664.3 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | nonsplit | ord | ss | ord | ord | split | ord | ord | ord | ss | ord | ord | ord | nonsplit |
| $\lambda$-invariant(s) | 7 | 1 | 5 | 3,1 | 1 | 1 | 2 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 1 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.