Properties

Label 478800.dq
Number of curves $4$
Conductor $478800$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dq1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 478800.dq have rank \(2\).

Complex multiplication

The elliptic curves in class 478800.dq do not have complex multiplication.

Modular form 478800.2.a.dq

Copy content sage:E.q_eigenform(10)
 
\(q - q^{7} - 2 q^{13} + 2 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 478800.dq

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
478800.dq1 478800dq3 \([0, 0, 0, -22606275, 41370381250]\) \(27384399945278713/153257496\) \(7150381733376000000\) \([2]\) \(18874368\) \(2.8100\) \(\Gamma_0(N)\)-optimal*
478800.dq2 478800dq2 \([0, 0, 0, -1438275, 621981250]\) \(7052482298233/499254336\) \(23293210300416000000\) \([2, 2]\) \(9437184\) \(2.4635\) \(\Gamma_0(N)\)-optimal*
478800.dq3 478800dq1 \([0, 0, 0, -286275, -47330750]\) \(55611739513/11440128\) \(533750611968000000\) \([2]\) \(4718592\) \(2.1169\) \(\Gamma_0(N)\)-optimal*
478800.dq4 478800dq4 \([0, 0, 0, 1297725, 2709549250]\) \(5180411077127/70976229912\) \(-3311466982774272000000\) \([2]\) \(18874368\) \(2.8100\)  
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 3 curves highlighted, and conditionally curve 478800.dq1.