Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-1274475x-441787750\)
|
(homogenize, simplify) |
\(y^2z=x^3-1274475xz^2-441787750z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1274475x-441787750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-17281/25, 1304422/125)$ | $8.4337366025352935946248763615$ | $\infty$ |
$(-395, 0)$ | $0$ | $2$ |
Integral points
\( \left(-395, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 478800 \) | = | $2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 19$ |
|
Discriminant: | $\Delta$ | = | $48170992730112000000$ | = | $2^{22} \cdot 3^{7} \cdot 5^{6} \cdot 7^{2} \cdot 19^{3} $ |
|
j-invariant: | $j$ | = | \( \frac{4906933498657}{1032471552} \) | = | $2^{-10} \cdot 3^{-1} \cdot 7^{-2} \cdot 19^{-3} \cdot 16993^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.4914967681780405852879071011$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.44432448706699024287267269457$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.948523185618163$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.112514747249947$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $8.4337366025352935946248763615$ |
|
Real period: | $\Omega$ | ≈ | $0.14420268305261698414000479110$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2^{2}\cdot2\cdot2\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $9.7293395699572137887535918688 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 9.729339570 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.144203 \cdot 8.433737 \cdot 32}{2^2} \\ & \approx 9.729339570\end{aligned}$$
Modular invariants
Modular form 478800.2.a.fn
For more coefficients, see the Downloads section to the right.
Modular degree: | 11796480 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{14}^{*}$ | additive | -1 | 4 | 22 | 10 |
$3$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
$5$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
$7$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$19$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3192 = 2^{3} \cdot 3 \cdot 7 \cdot 19 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1597 & 4 \\ 2 & 9 \end{array}\right),\left(\begin{array}{rr} 401 & 2794 \\ 2792 & 399 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1066 & 1 \\ 1063 & 0 \end{array}\right),\left(\begin{array}{rr} 3189 & 4 \\ 3188 & 5 \end{array}\right),\left(\begin{array}{rr} 2018 & 1 \\ 2183 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 913 & 4 \\ 1826 & 9 \end{array}\right)$.
The torsion field $K:=\Q(E[3192])$ is a degree-$1525001748480$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3192\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \) |
$3$ | additive | $8$ | \( 2800 = 2^{4} \cdot 5^{2} \cdot 7 \) |
$5$ | additive | $14$ | \( 19152 = 2^{4} \cdot 3^{2} \cdot 7 \cdot 19 \) |
$7$ | nonsplit multiplicative | $8$ | \( 68400 = 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
$19$ | nonsplit multiplicative | $20$ | \( 25200 = 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 478800.fn
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 798.g1, its twist by $60$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.