Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-45158427075x-3693654956722750\)
|
(homogenize, simplify) |
\(y^2z=x^3-45158427075xz^2-3693654956722750z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-45158427075x-3693654956722750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-122690, 0)$ | $0$ | $2$ |
Integral points
\( \left(-122690, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 478800 \) | = | $2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 19$ |
|
Discriminant: | $\Delta$ | = | $14300763466752000000000$ | = | $2^{19} \cdot 3^{7} \cdot 5^{9} \cdot 7^{2} \cdot 19^{4} $ |
|
j-invariant: | $j$ | = | \( \frac{218289391029690300712901881}{306514992000} \) | = | $2^{-7} \cdot 3^{-1} \cdot 5^{-3} \cdot 7^{-2} \cdot 19^{-4} \cdot 602112361^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $4.4161193589555594137541696663$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.3689470778445090713389352598$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0308751752376573$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.515305607587155$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.010356543962586105950604738195$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 128 $ = $ 2^{2}\cdot2\cdot2\cdot2\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.3256376272110215616774064889 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $4$ = $2^2$ (exact) |
|
BSD formula
$$\begin{aligned} 1.325637627 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{4 \cdot 0.010357 \cdot 1.000000 \cdot 128}{2^2} \\ & \approx 1.325637627\end{aligned}$$
Modular invariants
Modular form 478800.2.a.bb
For more coefficients, see the Downloads section to the right.
Modular degree: | 495452160 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{11}^{*}$ | additive | -1 | 4 | 19 | 7 |
$3$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
$5$ | $2$ | $I_{3}^{*}$ | additive | 1 | 2 | 9 | 3 |
$7$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$19$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2280 = 2^{3} \cdot 3 \cdot 5 \cdot 19 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 288 & 1433 \\ 1987 & 1974 \end{array}\right),\left(\begin{array}{rr} 1424 & 277 \\ 1421 & 1392 \end{array}\right),\left(\begin{array}{rr} 1516 & 2279 \\ 737 & 2274 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 2274 & 2275 \end{array}\right),\left(\begin{array}{rr} 2273 & 8 \\ 2272 & 9 \end{array}\right),\left(\begin{array}{rr} 1921 & 8 \\ 844 & 33 \end{array}\right),\left(\begin{array}{rr} 904 & 2277 \\ 2275 & 2278 \end{array}\right)$.
The torsion field $K:=\Q(E[2280])$ is a degree-$90773913600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2280\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 225 = 3^{2} \cdot 5^{2} \) |
$3$ | additive | $8$ | \( 53200 = 2^{4} \cdot 5^{2} \cdot 7 \cdot 19 \) |
$5$ | additive | $18$ | \( 19152 = 2^{4} \cdot 3^{2} \cdot 7 \cdot 19 \) |
$7$ | nonsplit multiplicative | $8$ | \( 68400 = 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
$19$ | split multiplicative | $20$ | \( 25200 = 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 478800.bb
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 3990.g1, its twist by $60$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.