Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-2890507419x-59813917940160\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-2890507419xz^2-59813917940160z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-234131100966x-43605048571679511\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-31040, 0)$ | $0$ | $2$ |
Integral points
\( \left(-31040, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 478632 \) | = | $2^{3} \cdot 3 \cdot 7^{2} \cdot 11 \cdot 37$ |
|
| Discriminant: | $\Delta$ | = | $40308151592115792$ | = | $2^{4} \cdot 3^{14} \cdot 7^{6} \cdot 11^{2} \cdot 37 $ |
|
| j-invariant: | $j$ | = | \( \frac{1418854149881269000523696128}{21413352213} \) | = | $2^{11} \cdot 3^{-14} \cdot 7^{3} \cdot 11^{-2} \cdot 37^{-1} \cdot 12640703^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.6666983962064177070127581679$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.4626942614921126179876710890$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.055743592957572$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.884971089932251$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.020589985110636358759952769628$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2\cdot2^{2}\cdot2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $0.65887952354036348031848862808 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $4$ = $2^2$ (exact) |
|
BSD formula
$$\begin{aligned} 0.658879524 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{4 \cdot 0.020590 \cdot 1.000000 \cdot 32}{2^2} \\ & \approx 0.658879524\end{aligned}$$
Modular invariants
Modular form 478632.2.a.j
For more coefficients, see the Downloads section to the right.
| Modular degree: | 161021952 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $III$ | additive | 1 | 3 | 4 | 0 |
| $3$ | $2$ | $I_{14}$ | nonsplit multiplicative | 1 | 1 | 14 | 14 |
| $7$ | $4$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $11$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $37$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1628 = 2^{2} \cdot 11 \cdot 37 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1410 & 1 \\ 923 & 0 \end{array}\right),\left(\begin{array}{rr} 1333 & 4 \\ 1038 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 409 & 1222 \\ 1220 & 407 \end{array}\right),\left(\begin{array}{rr} 1625 & 4 \\ 1624 & 5 \end{array}\right)$.
The torsion field $K:=\Q(E[1628])$ is a degree-$192421785600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1628\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 1813 = 7^{2} \cdot 37 \) |
| $3$ | nonsplit multiplicative | $4$ | \( 159544 = 2^{3} \cdot 7^{2} \cdot 11 \cdot 37 \) |
| $7$ | additive | $26$ | \( 3256 = 2^{3} \cdot 11 \cdot 37 \) |
| $11$ | split multiplicative | $12$ | \( 43512 = 2^{3} \cdot 3 \cdot 7^{2} \cdot 37 \) |
| $37$ | split multiplicative | $38$ | \( 12936 = 2^{3} \cdot 3 \cdot 7^{2} \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 478632.j
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 9768.q1, its twist by $-7$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.