Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-552279x+144687850\)
|
(homogenize, simplify) |
\(y^2z=x^3-552279xz^2+144687850z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-552279x+144687850\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(1903575/5929, 312131560/456533)$ | $11.357624797495208907864533628$ | $\infty$ |
$(323, 0)$ | $0$ | $2$ |
$(527, 0)$ | $0$ | $2$ |
Integral points
\( \left(-850, 0\right) \), \( \left(323, 0\right) \), \( \left(527, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 478584 \) | = | $2^{3} \cdot 3^{2} \cdot 17^{2} \cdot 23$ |
|
Discriminant: | $\Delta$ | = | $1737177606109552896$ | = | $2^{8} \cdot 3^{12} \cdot 17^{6} \cdot 23^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{4135597648}{385641} \) | = | $2^{4} \cdot 3^{-6} \cdot 7^{6} \cdot 13^{3} \cdot 23^{-2}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.2384102599310481855304105819$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.18960067680441157323680075980$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.111576621893251$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.920838607364581$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $11.357624797495208907864533628$ |
|
Real period: | $\Omega$ | ≈ | $0.25813928111694664560677917072$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2\cdot2^{2}\cdot2^{2}\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L'(E,1)$ | ≈ | $11.727396401685679802193540790 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 11.727396402 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.258139 \cdot 11.357625 \cdot 64}{4^2} \\ & \approx 11.727396402\end{aligned}$$
Modular invariants
Modular form 478584.2.a.bg
For more coefficients, see the Downloads section to the right.
Modular degree: | 7864320 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{1}^{*}$ | additive | 1 | 3 | 8 | 0 |
$3$ | $4$ | $I_{6}^{*}$ | additive | -1 | 2 | 12 | 6 |
$17$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
$23$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 2.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 4692 = 2^{2} \cdot 3 \cdot 17 \cdot 23 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3127 & 272 \\ 4046 & 543 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2857 & 2210 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2347 & 4420 \\ 2210 & 4149 \end{array}\right),\left(\begin{array}{rr} 4689 & 4 \\ 4688 & 5 \end{array}\right),\left(\begin{array}{rr} 2207 & 0 \\ 0 & 4691 \end{array}\right)$.
The torsion field $K:=\Q(E[4692])$ is a degree-$2009171755008$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/4692\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 2601 = 3^{2} \cdot 17^{2} \) |
$3$ | additive | $2$ | \( 53176 = 2^{3} \cdot 17^{2} \cdot 23 \) |
$17$ | additive | $146$ | \( 1656 = 2^{3} \cdot 3^{2} \cdot 23 \) |
$23$ | split multiplicative | $24$ | \( 20808 = 2^{3} \cdot 3^{2} \cdot 17^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 478584bg
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 552d2, its twist by $-51$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.