Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-1836x-105840\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-1836xz^2-105840z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-1836x-105840\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(114, 1080)$ | $1.7885039923984203466297128801$ | $\infty$ |
| $(76, 440)$ | $4.0104024773007767562839396204$ | $\infty$ |
| $(60, 0)$ | $0$ | $2$ |
Integral points
\( \left(60, 0\right) \), \((76,\pm 440)\), \((114,\pm 1080)\), \((226,\pm 3320)\), \((1410,\pm 52920)\)
Invariants
| Conductor: | $N$ | = | \( 47808 \) | = | $2^{6} \cdot 3^{2} \cdot 83$ |
|
| Discriminant: | $\Delta$ | = | $-4443215855616$ | = | $-1 \cdot 2^{15} \cdot 3^{9} \cdot 83^{2} $ |
|
| j-invariant: | $j$ | = | \( -\frac{1061208}{6889} \) | = | $-1 \cdot 2^{3} \cdot 3^{3} \cdot 17^{3} \cdot 83^{-2}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.1103316252412117110599222037$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.58006156695980219425805187582$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9566948704435101$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.4025697591878274$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $6.4224177487462547988169006398$ |
|
| Real period: | $\Omega$ | ≈ | $0.32489001641623975564852799898$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2^{2}\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $8.3463176312884811837544400631 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 8.346317631 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.324890 \cdot 6.422418 \cdot 16}{2^2} \\ & \approx 8.346317631\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 55296 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{5}^{*}$ | additive | -1 | 6 | 15 | 0 |
| $3$ | $2$ | $III^{*}$ | additive | 1 | 2 | 9 | 0 |
| $83$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1992 = 2^{3} \cdot 3 \cdot 83 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1081 & 4 \\ 170 & 9 \end{array}\right),\left(\begin{array}{rr} 1989 & 4 \\ 1988 & 5 \end{array}\right),\left(\begin{array}{rr} 1745 & 250 \\ 248 & 1743 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 995 & 0 \end{array}\right),\left(\begin{array}{rr} 668 & 1 \\ 1327 & 0 \end{array}\right)$.
The torsion field $K:=\Q(E[1992])$ is a degree-$288029048832$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1992\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 3 \) |
| $3$ | additive | $2$ | \( 5312 = 2^{6} \cdot 83 \) |
| $83$ | nonsplit multiplicative | $84$ | \( 576 = 2^{6} \cdot 3^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 47808be
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 23904a2, its twist by $-24$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-6}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $4$ | 4.2.5952096.2 | \(\Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.2267356594765824.8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 83 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | add | ord | ss | ord | ss | ss | ord | ord | ord | ord | ord | ord | ord | ord | nonsplit |
| $\lambda$-invariant(s) | - | - | 2 | 4,4 | 2 | 2,2 | 2,2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| $\mu$-invariant(s) | - | - | 0 | 0,0 | 0 | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.