Properties

Label 47775bz
Number of curves $1$
Conductor $47775$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bz1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 47775bz1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(5\)\(1\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 47775bz do not have complex multiplication.

Modular form 47775.2.a.bz

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{4} + q^{9} - 2 q^{12} - q^{13} + 4 q^{16} - 7 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 47775bz

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
47775.cd1 47775bz1 \([0, 1, 1, 16371367, -1454243731]\) \(633814853024541310976/367993254509587395\) \(-281744835483902849296875\) \([]\) \(5803200\) \(3.1891\) \(\Gamma_0(N)\)-optimal