Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| 
    \(y^2+xy=x^3-120688x+167825867\)
    
    
    
         | 
        (homogenize, simplify) | 
| 
    \(y^2z+xyz=x^3-120688xz^2+167825867z^3\)
    
    
    
         | 
        (dehomogenize, simplify) | 
| 
    \(y^2=x^3-156411675x+7830552885750\)
    
    
    
         | 
        (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(557, 16259)$ | $0.82641254755686518743804217922$ | $\infty$ | 
| $(-2497/4, 2497/8)$ | $0$ | $2$ | 
Integral points
      
    \( \left(-514, 9959\right) \), \( \left(-514, -9445\right) \), \( \left(263, 12290\right) \), \( \left(263, -12553\right) \), \( \left(557, 16259\right) \), \( \left(557, -16816\right) \), \( \left(8882, 832109\right) \), \( \left(8882, -840991\right) \)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 47775 \) | = | $3 \cdot 5^{2} \cdot 7^{2} \cdot 13$ | 
     | 
        
| Discriminant: | $\Delta$ | = | $-12056458551445546875$ | = | $-1 \cdot 3^{8} \cdot 5^{7} \cdot 7^{7} \cdot 13^{4} $ | 
     | 
        
| j-invariant: | $j$ | = | \( -\frac{105756712489}{6558605235} \) | = | $-1 \cdot 3^{-8} \cdot 5^{-1} \cdot 7^{-1} \cdot 13^{-4} \cdot 4729^{3}$ | 
     | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | 
     | 
        ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.3411543160363407929458172034$ | 
     | 
        ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.56348028529163395309276116506$ | 
     | 
        ||
| $abc$ quality: | $Q$ | ≈ | $0.9573510240464985$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.770643275635609$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ | 
     | 
        
| Mordell-Weil rank: | $r$ | = | $ 1$ | 
     | 
        
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.82641254755686518743804217922$ | 
     | 
| Real period: | $\Omega$ | ≈ | $0.18652938701930129724942803030$ | 
     | 
        
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 128 $ = $ 2^{3}\cdot2\cdot2^{2}\cdot2 $ | 
     | 
        
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ | 
     | 
        
| Special value: | $ L'(E,1)$ | ≈ | $4.9328072294669198491363277277 $ | 
     | 
        
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) | 
     | 
        
BSD formula
$$\begin{aligned} 4.932807229 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.186529 \cdot 0.826413 \cdot 128}{2^2} \\ & \approx 4.932807229\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 1179648 | 
     | 
        
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 | 
     | 
        
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $3$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 | 
| $5$ | $2$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 | 
| $7$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 | 
| $13$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 4.6.0.1 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3640 = 2^{3} \cdot 5 \cdot 7 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1556 & 3639 \\ 2577 & 3634 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 2283 & 2276 \\ 2322 & 461 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 3634 & 3635 \end{array}\right),\left(\begin{array}{rr} 2904 & 3637 \\ 3635 & 3638 \end{array}\right),\left(\begin{array}{rr} 561 & 8 \\ 2244 & 33 \end{array}\right),\left(\begin{array}{rr} 459 & 458 \\ 1378 & 3195 \end{array}\right),\left(\begin{array}{rr} 3633 & 8 \\ 3632 & 9 \end{array}\right)$.
The torsion field $K:=\Q(E[3640])$ is a degree-$811550638080$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3640\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | good | $2$ | \( 1225 = 5^{2} \cdot 7^{2} \) | 
| $3$ | split multiplicative | $4$ | \( 15925 = 5^{2} \cdot 7^{2} \cdot 13 \) | 
| $5$ | additive | $18$ | \( 1911 = 3 \cdot 7^{2} \cdot 13 \) | 
| $7$ | additive | $32$ | \( 975 = 3 \cdot 5^{2} \cdot 13 \) | 
| $13$ | nonsplit multiplicative | $14$ | \( 3675 = 3 \cdot 5^{2} \cdot 7^{2} \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 47775.bh
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 1365.d3, its twist by $-35$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-35}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{7}) \) | \(\Z/4\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{-5}) \) | \(\Z/4\Z\) | not in database | 
| $4$ | \(\Q(\sqrt{-5}, \sqrt{7})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.0.470596000000.3 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/8\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/8\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/12\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/12\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ord | split | add | add | ord | nonsplit | ord | ord | ord | ord | ord | ord | ord | ord | ord | 
| $\lambda$-invariant(s) | 6 | 6 | - | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
| $\mu$-invariant(s) | 1 | 0 | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.