Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3+x^2-226861538x+1143337480031\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3+x^2z-226861538xz^2+1143337480031z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-294012553275x+53347963656633750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-17135, 8567)$ | $0$ | $2$ |
$(5985, -2993)$ | $0$ | $2$ |
Integral points
\( \left(-17135, 8567\right) \), \( \left(5985, -2993\right) \)
Invariants
Conductor: | $N$ | = | \( 476850 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 17^{2}$ |
|
Discriminant: | $\Delta$ | = | $182431587714939373412250000$ | = | $2^{4} \cdot 3^{10} \cdot 5^{6} \cdot 11^{6} \cdot 17^{8} $ |
|
j-invariant: | $j$ | = | \( \frac{3423676911662954233}{483711578981136} \) | = | $2^{-4} \cdot 3^{-10} \cdot 7^{3} \cdot 11^{-6} \cdot 17^{-2} \cdot 139^{3} \cdot 1549^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.7650180271058753926225740710$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.5436923988607171651974270955$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.070078751332218$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.302744242639827$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.054674385856747985918505073615$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 256 $ = $ 2^{2}\cdot2\cdot2^{2}\cdot2\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L(E,1)$ | ≈ | $3.4991606948318710987843247114 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $4$ = $2^2$ (exact) |
|
BSD formula
$$\begin{aligned} 3.499160695 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{4 \cdot 0.054674 \cdot 1.000000 \cdot 256}{4^2} \\ & \approx 3.499160695\end{aligned}$$
Modular invariants
Modular form 476850.2.a.hs
For more coefficients, see the Downloads section to the right.
Modular degree: | 283115520 |
|
$ \Gamma_0(N) $-optimal: | not computed* (one of 3 curves in this isogeny class which might be optimal) | |
Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$3$ | $2$ | $I_{10}$ | nonsplit multiplicative | 1 | 1 | 10 | 10 |
$5$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
$11$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
$17$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 2.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 11220 = 2^{2} \cdot 3 \cdot 5 \cdot 11 \cdot 17 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 7141 & 8980 \\ 7550 & 6741 \end{array}\right),\left(\begin{array}{rr} 11217 & 4 \\ 11216 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2243 & 0 \\ 0 & 11219 \end{array}\right),\left(\begin{array}{rr} 7481 & 4490 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 8049 & 6730 \\ 11090 & 4489 \end{array}\right),\left(\begin{array}{rr} 5611 & 8980 \\ 4490 & 6741 \end{array}\right)$.
The torsion field $K:=\Q(E[11220])$ is a degree-$47648342016000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/11220\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 7225 = 5^{2} \cdot 17^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 14450 = 2 \cdot 5^{2} \cdot 17^{2} \) |
$5$ | additive | $14$ | \( 6358 = 2 \cdot 11 \cdot 17^{2} \) |
$11$ | nonsplit multiplicative | $12$ | \( 43350 = 2 \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
$17$ | additive | $162$ | \( 1650 = 2 \cdot 3 \cdot 5^{2} \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 476850.hs
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 1122.c2, its twist by $85$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.