Properties

Label 476520.cr
Number of curves $4$
Conductor $476520$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cr1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 476520.cr have rank \(1\).

Complex multiplication

The elliptic curves in class 476520.cr do not have complex multiplication.

Modular form 476520.2.a.cr

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + 4 q^{7} + q^{9} + q^{11} - 2 q^{13} + q^{15} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 476520.cr

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
476520.cr1 476520cr3 \([0, 1, 0, -3812280, 2863734048]\) \(127191074376964/495\) \(23846616161280\) \([2]\) \(7077888\) \(2.2030\) \(\Gamma_0(N)\)-optimal*
476520.cr2 476520cr2 \([0, 1, 0, -238380, 44641728]\) \(124386546256/245025\) \(2951018749958400\) \([2, 2]\) \(3538944\) \(1.8565\) \(\Gamma_0(N)\)-optimal*
476520.cr3 476520cr4 \([0, 1, 0, -158960, 74948400]\) \(-9220796644/45106875\) \(-2173022897696640000\) \([2]\) \(7077888\) \(2.2030\)  
476520.cr4 476520cr1 \([0, 1, 0, -19975, 174470]\) \(1171019776/658845\) \(495935095479120\) \([2]\) \(1769472\) \(1.5099\) \(\Gamma_0(N)\)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 3 curves highlighted, and conditionally curve 476520.cr1.