Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-1445003175x-21299096979250\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-1445003175xz^2-21299096979250z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-1445003175x-21299096979250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(43930, 0)$ | $0$ | $2$ |
Integral points
\( \left(43930, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 476100 \) | = | $2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-2875637017969706521620000000$ | = | $-1 \cdot 2^{8} \cdot 3^{8} \cdot 5^{7} \cdot 23^{12} $ |
|
| j-invariant: | $j$ | = | \( -\frac{772993034343376}{6661615005} \) | = | $-1 \cdot 2^{4} \cdot 3^{-2} \cdot 5^{-1} \cdot 7^{3} \cdot 11^{6} \cdot 23^{-6} \cdot 43^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $4.0937935876101772211504603862$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.70992325872120046980426027091$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0368394206420084$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.729390472545661$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.012237114117666260324169174198$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 1\cdot2^{2}\cdot2^{2}\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.7621444329439414866803610845 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $9$ = $3^2$ (exact) |
|
BSD formula
$$\begin{aligned} 1.762144433 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{9 \cdot 0.012237 \cdot 1.000000 \cdot 64}{2^2} \\ & \approx 1.762144433\end{aligned}$$
Modular invariants
Modular form 476100.2.a.h
For more coefficients, see the Downloads section to the right.
| Modular degree: | 306561024 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
| $3$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
| $5$ | $4$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
| $23$ | $4$ | $I_{6}^{*}$ | additive | -1 | 2 | 12 | 6 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1380 = 2^{2} \cdot 3 \cdot 5 \cdot 23 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 919 & 1368 \\ 914 & 1307 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 1330 & 1371 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 179 & 1368 \\ 1074 & 1307 \end{array}\right),\left(\begin{array}{rr} 1370 & 1377 \\ 579 & 8 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1369 & 12 \\ 1368 & 13 \end{array}\right),\left(\begin{array}{rr} 1266 & 817 \\ 1265 & 806 \end{array}\right)$.
The torsion field $K:=\Q(E[1380])$ is a degree-$6155550720$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1380\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 119025 = 3^{2} \cdot 5^{2} \cdot 23^{2} \) |
| $3$ | additive | $8$ | \( 52900 = 2^{2} \cdot 5^{2} \cdot 23^{2} \) |
| $5$ | additive | $18$ | \( 19044 = 2^{2} \cdot 3^{2} \cdot 23^{2} \) |
| $23$ | additive | $288$ | \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 476100h
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 1380d4, its twist by $345$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.