Properties

Label 475600.h
Number of curves 22
Conductor 475600475600
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 475600.h have rank 11.

Complex multiplication

The elliptic curves in class 475600.h do not have complex multiplication.

Modular form 475600.2.a.h

Copy content sage:E.q_eigenform(10)
 
q2q3+5q7+q9+q13+6q172q19+O(q20)q - 2 q^{3} + 5 q^{7} + q^{9} + q^{13} + 6 q^{17} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1331)\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 475600.h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
475600.h1 475600h2 [0,1,0,2139328,1814387508][0, 1, 0, -2139328, 1814387508] 10574408522150085865/7779603246481408-10574408522150085865/7779603246481408 796631372439696179200-796631372439696179200 [][] 2202163222021632 2.71002.7100 Γ0(N)\Gamma_0(N)-optimal*
475600.h2 475600h1 [0,1,0,215472,38369132][0, 1, 0, 215472, -38369132] 10804241130540935/1248653115443210804241130540935/12486531154432 1278620790213836800-1278620790213836800 [][] 73405447340544 2.16072.1607 Γ0(N)\Gamma_0(N)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 2 curves highlighted, and conditionally curve 475600.h1.