Properties

Label 474320gx
Number of curves $2$
Conductor $474320$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("gx1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 474320gx have rank \(0\).

Complex multiplication

The elliptic curves in class 474320gx do not have complex multiplication.

Modular form 474320.2.a.gx

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{5} - 2 q^{9} + 4 q^{13} - q^{15} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 474320gx

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
474320.gx1 474320gx1 \([0, 1, 0, -476296, 128411380]\) \(-1693700041/32000\) \(-225771390107648000\) \([]\) \(5225472\) \(2.1245\) \(\Gamma_0(N)\)-optimal
474320.gx2 474320gx2 \([0, 1, 0, 1895304, 601782740]\) \(106718863559/83886080\) \(-591846152883792773120\) \([]\) \(15676416\) \(2.6738\)