Properties

Label 47432.h
Number of curves $1$
Conductor $47432$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 47432.h1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 - 5 T + 17 T^{2}\) 1.17.af
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + 7 T + 23 T^{2}\) 1.23.h
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 47432.h do not have complex multiplication.

Modular form 47432.2.a.h

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} - 2 q^{9} + 6 q^{13} + q^{15} + 5 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 47432.h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
47432.h1 47432o1 \([0, -1, 0, -1976, -30743]\) \(12544\) \(68056287376\) \([]\) \(32400\) \(0.82207\) \(\Gamma_0(N)\)-optimal