Properties

Label 473200ez
Number of curves $3$
Conductor $473200$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ez1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 473200ez have rank \(0\).

Complex multiplication

The elliptic curves in class 473200ez do not have complex multiplication.

Modular form 473200.2.a.ez

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{7} - 2 q^{9} - 3 q^{11} - 6 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 473200ez

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
473200.ez2 473200ez1 \([0, 1, 0, -39103052408, -3227203597664812]\) \(-21405018343206000779641/2177246093750000000\) \(-672585666593750000000000000000000\) \([]\) \(2048385024\) \(5.0389\) \(\Gamma_0(N)\)-optimal*
473200.ez3 473200ez2 \([0, 1, 0, 240803197592, 2960213839835188]\) \(4998853083179567995470359/2905108466204672000000\) \(-897433836201786025705472000000000000\) \([]\) \(6145155072\) \(5.5882\) \(\Gamma_0(N)\)-optimal*
473200.ez1 473200ez3 \([0, 1, 0, -3414016152408, 2574946340740935188]\) \(-14245586655234650511684983641/1028175397808386133196800\) \(-317619600878086301644128832716800000000\) \([]\) \(18435465216\) \(6.1375\) \(\Gamma_0(N)\)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 3 curves highlighted, and conditionally curve 473200ez1.