Show commands: SageMath
Rank
The elliptic curves in class 473200em have rank \(1\).
Complex multiplication
The elliptic curves in class 473200em do not have complex multiplication.Modular form 473200.2.a.em
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 473200em
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 473200.em3 | 473200em1 | \([0, 0, 0, -4508075, -3683819750]\) | \(32798729601/3185\) | \(983896746560000000\) | \([2]\) | \(8257536\) | \(2.4883\) | \(\Gamma_0(N)\)-optimal* |
| 473200.em2 | 473200em2 | \([0, 0, 0, -4846075, -3099417750]\) | \(40743095121/10144225\) | \(3133711137793600000000\) | \([2, 2]\) | \(16515072\) | \(2.8349\) | \(\Gamma_0(N)\)-optimal* |
| 473200.em1 | 473200em3 | \([0, 0, 0, -26816075, 50880872250]\) | \(6903498885921/374712065\) | \(115754468336037440000000\) | \([4]\) | \(33030144\) | \(3.1815\) | \(\Gamma_0(N)\)-optimal* |
| 473200.em4 | 473200em4 | \([0, 0, 0, 11715925, -19677979750]\) | \(575722725759/874680625\) | \(-270202644024040000000000\) | \([2]\) | \(33030144\) | \(3.1815\) |