Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-64120008x+174063759988\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-64120008xz^2+174063759988z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-5193720675x+126908062193250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-9122, 0)$ | $0$ | $2$ |
Integral points
\( \left(-9122, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 473200 \) | = | $2^{4} \cdot 5^{2} \cdot 7 \cdot 13^{2}$ |
|
| Discriminant: | $\Delta$ | = | $3779737741584896000000000$ | = | $2^{18} \cdot 5^{9} \cdot 7^{6} \cdot 13^{7} $ |
|
| j-invariant: | $j$ | = | \( \frac{94376601570889}{12235496000} \) | = | $2^{-6} \cdot 5^{-3} \cdot 7^{-6} \cdot 11^{3} \cdot 13^{-1} \cdot 4139^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.4444851712789968799297433239$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.66414435577123301518538781505$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9299956493074025$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.01576740746297$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.075748031091655853013645963557$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2^{2}\cdot2\cdot2\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.2119684974664936482183354169 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.211968497 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.075748 \cdot 1.000000 \cdot 64}{2^2} \\ & \approx 1.211968497\end{aligned}$$
Modular invariants
Modular form 473200.2.a.y
For more coefficients, see the Downloads section to the right.
| Modular degree: | 83607552 |
|
| $ \Gamma_0(N) $-optimal: | not computed* (one of 4 curves in this isogeny class which might be optimal) | |
| Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{10}^{*}$ | additive | -1 | 4 | 18 | 6 |
| $5$ | $2$ | $I_{3}^{*}$ | additive | 1 | 2 | 9 | 3 |
| $7$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
| $13$ | $4$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | $\ell$-adic index |
|---|---|---|---|
| $2$ | 2B | 2.3.0.1 | $3$ |
| $3$ | 3B | 3.4.0.1 | $4$ |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 10920 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 7801 & 12 \\ 3126 & 73 \end{array}\right),\left(\begin{array}{rr} 1670 & 10917 \\ 4227 & 8 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 10870 & 10911 \end{array}\right),\left(\begin{array}{rr} 5461 & 12 \\ 6 & 73 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 10909 & 12 \\ 10908 & 13 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 10910 & 10917 \\ 6579 & 8 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5001 & 3182 \\ 7714 & 5899 \end{array}\right),\left(\begin{array}{rr} 3641 & 12 \\ 9100 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[10920])$ is a degree-$19477215313920$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/10920\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 4225 = 5^{2} \cdot 13^{2} \) |
| $3$ | good | $2$ | \( 67600 = 2^{4} \cdot 5^{2} \cdot 13^{2} \) |
| $5$ | additive | $18$ | \( 18928 = 2^{4} \cdot 7 \cdot 13^{2} \) |
| $7$ | nonsplit multiplicative | $8$ | \( 67600 = 2^{4} \cdot 5^{2} \cdot 13^{2} \) |
| $13$ | additive | $98$ | \( 2800 = 2^{4} \cdot 5^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 473200.y
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 910.a2, its twist by $-260$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.