Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2+141167x+13757588\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z+141167xz^2+13757588z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+11434500x+9994978125\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-92, 0)$ | $0$ | $2$ |
Integral points
\( \left(-92, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 471900 \) | = | $2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{2} \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $-261249886218750000$ | = | $-1 \cdot 2^{4} \cdot 3 \cdot 5^{9} \cdot 11^{8} \cdot 13 $ |
|
j-invariant: | $j$ | = | \( \frac{5619712}{4719} \) | = | $2^{14} \cdot 3^{-1} \cdot 7^{3} \cdot 11^{-2} \cdot 13^{-1}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.0296959922221159917337695657$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.60737913868929299772018243035$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.7943452872776858$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.6118191834118143$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.20116992240447105551471150126$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 1\cdot1\cdot2\cdot2^{2}\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $6.4374375169430737764707680403 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $16$ = $4^2$ (exact) |
|
BSD formula
$$\begin{aligned} 6.437437517 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{16 \cdot 0.201170 \cdot 1.000000 \cdot 8}{2^2} \\ & \approx 6.437437517\end{aligned}$$
Modular invariants
Modular form 471900.2.a.fi
For more coefficients, see the Downloads section to the right.
Modular degree: | 5068800 |
|
$ \Gamma_0(N) $-optimal: | not computed* (one of 2 curves in this isogeny class which might be optimal) | |
Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $IV$ | additive | -1 | 2 | 4 | 0 |
$3$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$5$ | $2$ | $III^{*}$ | additive | -1 | 2 | 9 | 0 |
$11$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
$13$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 8580 = 2^{2} \cdot 3 \cdot 5 \cdot 11 \cdot 13 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 7801 & 4 \\ 7022 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 6868 & 1 \\ 6863 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5722 & 1 \\ 5719 & 0 \end{array}\right),\left(\begin{array}{rr} 2149 & 6436 \\ 2144 & 6435 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 5282 & 1 \\ 5939 & 0 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 8577 & 4 \\ 8576 & 5 \end{array}\right)$.
The torsion field $K:=\Q(E[8580])$ is a degree-$63764692992000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/8580\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 23595 = 3 \cdot 5 \cdot 11^{2} \cdot 13 \) |
$3$ | split multiplicative | $4$ | \( 157300 = 2^{2} \cdot 5^{2} \cdot 11^{2} \cdot 13 \) |
$5$ | additive | $14$ | \( 18876 = 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \) |
$11$ | additive | $72$ | \( 3900 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 36300 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 471900.fi
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 42900.v2, its twist by $-55$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.