Properties

Label 471900.eg
Number of curves $2$
Conductor $471900$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("eg1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 471900.eg have rank \(0\).

Complex multiplication

The elliptic curves in class 471900.eg do not have complex multiplication.

Modular form 471900.2.a.eg

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{9} + q^{13} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 471900.eg

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
471900.eg1 471900eg1 \([0, 1, 0, -587028273, 5474205772308]\) \(6314146617344431898624/491941593\) \(1743009080873346000\) \([2]\) \(57093120\) \(3.3929\) \(\Gamma_0(N)\)-optimal
471900.eg2 471900eg2 \([0, 1, 0, -586988948, 5474975913108]\) \(-394554859317462604304/110153177479917\) \(-6244578343983975693984000\) \([2]\) \(114186240\) \(3.7394\)