Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-115035708x+468161547588\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-115035708xz^2+468161547588z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-9317892375x+341317721868750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(1932, 503118)$ | $2.8106636606794955563289518290$ | $\infty$ |
| $(6783, 0)$ | $0$ | $2$ |
Integral points
\((1932,\pm 503118)\), \( \left(6783, 0\right) \), \((83851908,\pm 767837684250)\)
Invariants
| Conductor: | $N$ | = | \( 471900 \) | = | $2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{2} \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $2727486432107365500000000$ | = | $2^{8} \cdot 3^{4} \cdot 5^{9} \cdot 11^{9} \cdot 13^{4} $ |
|
| j-invariant: | $j$ | = | \( \frac{190062137800208}{3079189971} \) | = | $2^{4} \cdot 3^{-4} \cdot 11^{-3} \cdot 13^{-4} \cdot 22817^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.4882908755148295446275906972$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.62016668441677211870122799399$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9225485368424395$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.151038861064433$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.8106636606794955563289518290$ |
|
| Real period: | $\Omega$ | ≈ | $0.080919108735574037823997205747$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 192 $ = $ 3\cdot2^{2}\cdot2\cdot2^{2}\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $10.916947122127232263646219941 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 10.916947122 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.080919 \cdot 2.810664 \cdot 192}{2^2} \\ & \approx 10.916947122\end{aligned}$$
Modular invariants
Modular form 471900.2.a.dk
For more coefficients, see the Downloads section to the right.
| Modular degree: | 88473600 |
|
| $ \Gamma_0(N) $-optimal: | not computed* (one of 2 curves in this isogeny class which might be optimal) | |
| Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $3$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
| $3$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
| $5$ | $2$ | $III^{*}$ | additive | -1 | 2 | 9 | 0 |
| $11$ | $4$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
| $13$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 220 = 2^{2} \cdot 5 \cdot 11 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 202 & 1 \\ 119 & 0 \end{array}\right),\left(\begin{array}{rr} 217 & 4 \\ 216 & 5 \end{array}\right),\left(\begin{array}{rr} 56 & 169 \\ 165 & 56 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 48 & 1 \\ 43 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[220])$ is a degree-$50688000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/220\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 605 = 5 \cdot 11^{2} \) |
| $3$ | split multiplicative | $4$ | \( 157300 = 2^{2} \cdot 5^{2} \cdot 11^{2} \cdot 13 \) |
| $5$ | additive | $14$ | \( 18876 = 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \) |
| $11$ | additive | $72$ | \( 3900 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 13 \) |
| $13$ | nonsplit multiplicative | $14$ | \( 36300 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 471900.dk
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 42900.h1, its twist by $-55$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.