Properties

Label 47190.y
Number of curves $4$
Conductor $47190$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("y1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 47190.y have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(11\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 47190.y do not have complex multiplication.

Modular form 47190.2.a.y

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - q^{8} + q^{9} + q^{10} + q^{12} - q^{13} - q^{15} + q^{16} - 6 q^{17} - q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 47190.y

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
47190.y1 47190u4 \([1, 0, 1, -19411549, 32915975816]\) \(456612868287073618849/12544848030000\) \(22223963520874830000\) \([2]\) \(2949120\) \(2.8157\)  
47190.y2 47190u3 \([1, 0, 1, -5414269, -4384324408]\) \(9908022260084596129/1047363281250000\) \(1855467941894531250000\) \([2]\) \(2949120\) \(2.8157\)  
47190.y3 47190u2 \([1, 0, 1, -1261549, 471035816]\) \(125337052492018849/18404100000000\) \(32603985800100000000\) \([2, 2]\) \(1474560\) \(2.4691\)  
47190.y4 47190u1 \([1, 0, 1, 132371, 40035752]\) \(144794100308831/474439680000\) \(-840498833940480000\) \([2]\) \(737280\) \(2.1225\) \(\Gamma_0(N)\)-optimal