Properties

Label 47190.e
Number of curves $2$
Conductor $47190$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("e1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 47190.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
47190.e1 47190c2 \([1, 1, 0, -551278, -157276412]\) \(10458774902616769/38228327280\) \(67723813704484080\) \([2]\) \(737280\) \(2.0901\)  
47190.e2 47190c1 \([1, 1, 0, -18878, -4690572]\) \(-420021471169/5104070400\) \(-9042172061894400\) \([2]\) \(368640\) \(1.7435\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 47190.e have rank \(0\).

Complex multiplication

The elliptic curves in class 47190.e do not have complex multiplication.

Modular form 47190.2.a.e

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} + 2q^{7} - q^{8} + q^{9} + q^{10} - q^{12} - q^{13} - 2q^{14} + q^{15} + q^{16} - 2q^{17} - q^{18} - 4q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.