Properties

Label 47040ef
Number of curves $4$
Conductor $47040$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("ef1")
 
E.isogeny_class()
 

Elliptic curves in class 47040ef

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
47040.ba3 47040ef1 \([0, -1, 0, -5486301, -4943406915]\) \(151591373397612544/32558203125\) \(3922370600400000000\) \([2]\) \(1474560\) \(2.5626\) \(\Gamma_0(N)\)-optimal
47040.ba2 47040ef2 \([0, -1, 0, -6098801, -3770714415]\) \(13015144447800784/4341909875625\) \(8369297079622133760000\) \([2, 2]\) \(2949120\) \(2.9092\)  
47040.ba4 47040ef3 \([0, -1, 0, 17715199, -26027278815]\) \(79743193254623804/84085819746075\) \(-648322259832404552908800\) \([2]\) \(5898240\) \(3.2558\)  
47040.ba1 47040ef4 \([0, -1, 0, -39712801, 93528369985]\) \(898353183174324196/29899176238575\) \(230529970031303732428800\) \([2]\) \(5898240\) \(3.2558\)  

Rank

sage: E.rank()
 

The elliptic curves in class 47040ef have rank \(1\).

Complex multiplication

The elliptic curves in class 47040ef do not have complex multiplication.

Modular form 47040.2.a.ef

sage: E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + q^{9} + 6 q^{13} + q^{15} + 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.