Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-1132161x-459628065\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-1132161xz^2-459628065z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-91705068x-334793744208\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(1962, 69825)$ | $4.1876366592791693150843993049$ | $\infty$ |
$(-565, 0)$ | $0$ | $2$ |
$(1227, 0)$ | $0$ | $2$ |
Integral points
\( \left(-663, 0\right) \), \( \left(-565, 0\right) \), \( \left(1227, 0\right) \), \((1962,\pm 69825)\), \((5835,\pm 437760)\)
Invariants
Conductor: | $N$ | = | \( 47040 \) | = | $2^{6} \cdot 3 \cdot 5 \cdot 7^{2}$ |
|
Discriminant: | $\Delta$ | = | $1762673003436441600$ | = | $2^{24} \cdot 3^{6} \cdot 5^{2} \cdot 7^{8} $ |
|
j-invariant: | $j$ | = | \( \frac{5203798902289}{57153600} \) | = | $2^{-6} \cdot 3^{-6} \cdot 5^{-2} \cdot 7^{-2} \cdot 13^{3} \cdot 31^{3} \cdot 43^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.3158221237894718750982284754$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.30314627842189725841970392149$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0709743427632117$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.966422900872451$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.1876366592791693150843993049$ |
|
Real period: | $\Omega$ | ≈ | $0.14645718369539493622813865867$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 192 $ = $ 2^{2}\cdot( 2 \cdot 3 )\cdot2\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L'(E,1)$ | ≈ | $7.3597136574914313131202491025 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.359713657 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.146457 \cdot 4.187637 \cdot 192}{4^2} \\ & \approx 7.359713657\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 884736 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{14}^{*}$ | additive | 1 | 6 | 24 | 6 |
$3$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
$5$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$7$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 8.12.0.1 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \), index $384$, genus $5$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 599 & 828 \\ 234 & 767 \end{array}\right),\left(\begin{array}{rr} 567 & 10 \\ 142 & 3 \end{array}\right),\left(\begin{array}{rr} 829 & 12 \\ 828 & 13 \end{array}\right),\left(\begin{array}{rr} 9 & 4 \\ 824 & 833 \end{array}\right),\left(\begin{array}{rr} 419 & 834 \\ 0 & 839 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 631 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 679 & 6 \\ 498 & 835 \end{array}\right)$.
The torsion field $K:=\Q(E[840])$ is a degree-$185794560$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 49 = 7^{2} \) |
$3$ | split multiplicative | $4$ | \( 15680 = 2^{6} \cdot 5 \cdot 7^{2} \) |
$5$ | nonsplit multiplicative | $6$ | \( 9408 = 2^{6} \cdot 3 \cdot 7^{2} \) |
$7$ | additive | $32$ | \( 960 = 2^{6} \cdot 3 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 47040cf
consists of 8 curves linked by isogenies of
degrees dividing 12.
Twists
The minimal quadratic twist of this elliptic curve is 210a2, its twist by $-56$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-14}) \) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$4$ | \(\Q(\sqrt{-2}, \sqrt{105})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{2}, \sqrt{-7})\) | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$4$ | \(\Q(\sqrt{7}, \sqrt{30})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$6$ | 6.2.145212480000.6 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$8$ | 8.0.7965941760000.24 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$8$ | 8.0.7965941760000.10 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
$16$ | 16.0.63456228123711897600000000.12 | \(\Z/4\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/24\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$18$ | 18.0.66936354089182552647573289146777600000000.2 | \(\Z/2\Z \oplus \Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | split | nonsplit | add | ss | ord | ord | ord | ss | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 4 | 1 | - | 1,1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | 0 | - | 0,0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.