Properties

Label 47040.ft
Number of curves $4$
Conductor $47040$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ft1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 47040.ft have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 47040.ft do not have complex multiplication.

Modular form 47040.2.a.ft

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + q^{9} - 4 q^{11} - 6 q^{13} + q^{15} - 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 47040.ft

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
47040.ft1 47040hi4 \([0, 1, 0, -20003760065, 1088962462461663]\) \(229625675762164624948320008/9568125\) \(36886293319680000\) \([2]\) \(41287680\) \(4.0795\)  
47040.ft2 47040hi2 \([0, 1, 0, -1250235065, 17014724166663]\) \(448487713888272974160064/91549016015625\) \(44116583158670400000000\) \([2, 2]\) \(20643840\) \(3.7329\)  
47040.ft3 47040hi3 \([0, 1, 0, -1245948545, 17137192614975]\) \(-55486311952875723077768/801237030029296875\) \(-3088866847815000000000000000\) \([2]\) \(41287680\) \(4.0795\)  
47040.ft4 47040hi1 \([0, 1, 0, -78407660, 263920143150]\) \(7079962908642659949376/100085966990454375\) \(753600891549437872920000\) \([2]\) \(10321920\) \(3.3864\) \(\Gamma_0(N)\)-optimal