Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2+2286079x-31092828255\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z+2286079xz^2-31092828255z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+185172372x-22666116280752\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(358861/25, 215030816/125)$ | $7.2649207143505648952237891467$ | $\infty$ |
$(2903, 0)$ | $0$ | $2$ |
Integral points
\( \left(2903, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 47040 \) | = | $2^{6} \cdot 3 \cdot 5 \cdot 7^{2}$ |
|
Discriminant: | $\Delta$ | = | $-418386197376000000000000$ | = | $-1 \cdot 2^{19} \cdot 3^{4} \cdot 5^{12} \cdot 7^{9} $ |
|
j-invariant: | $j$ | = | \( \frac{42841933504271}{13565917968750} \) | = | $2^{-1} \cdot 3^{-4} \cdot 5^{-12} \cdot 7^{-3} \cdot 11^{3} \cdot 3181^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.2117018584034993755044671546$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.1990260130359247588259426007$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0876511700840974$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.748210710447733$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $7.2649207143505648952237891467$ |
|
Real period: | $\Omega$ | ≈ | $0.044330285009332324090850309176$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2^{2}\cdot2\cdot2\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $5.1528960933978036210706708140 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.152896093 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.044330 \cdot 7.264921 \cdot 64}{2^2} \\ & \approx 5.152896093\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 5308416 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{9}^{*}$ | additive | -1 | 6 | 19 | 1 |
$3$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$5$ | $2$ | $I_{12}$ | nonsplit multiplicative | 1 | 1 | 12 | 12 |
$7$ | $4$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.8 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \), index $384$, genus $5$, and generators
$\left(\begin{array}{rr} 209 & 816 \\ 198 & 551 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 12 & 145 \end{array}\right),\left(\begin{array}{rr} 337 & 24 \\ 684 & 289 \end{array}\right),\left(\begin{array}{rr} 15 & 106 \\ 374 & 11 \end{array}\right),\left(\begin{array}{rr} 141 & 284 \\ 8 & 453 \end{array}\right),\left(\begin{array}{rr} 817 & 24 \\ 816 & 25 \end{array}\right),\left(\begin{array}{rr} 344 & 819 \\ 645 & 374 \end{array}\right),\left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 594 & 431 \\ 805 & 664 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 24 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[840])$ is a degree-$185794560$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 49 = 7^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 3136 = 2^{6} \cdot 7^{2} \) |
$5$ | nonsplit multiplicative | $6$ | \( 9408 = 2^{6} \cdot 3 \cdot 7^{2} \) |
$7$ | additive | $32$ | \( 960 = 2^{6} \cdot 3 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3, 4, 6 and 12.
Its isogeny class 47040.z
consists of 8 curves linked by isogenies of
degrees dividing 12.
Twists
The minimal quadratic twist of this elliptic curve is 210.d8, its twist by $56$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-14}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{2}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-7}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-42}) \) | \(\Z/6\Z\) | not in database |
$4$ | \(\Q(\sqrt{2}, \sqrt{-7})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{3}, \sqrt{-14})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$4$ | \(\Q(\sqrt{2}, \sqrt{-21})\) | \(\Z/12\Z\) | not in database |
$4$ | \(\Q(\sqrt{6}, \sqrt{-7})\) | \(\Z/12\Z\) | not in database |
$6$ | 6.2.41479796736.3 | \(\Z/6\Z\) | not in database |
$8$ | 8.0.1973822685184.10 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.4.24395696640000.45 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.509820272640000.273 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.12745506816.6 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/24\Z\) | not in database |
$16$ | deg 16 | \(\Z/24\Z\) | not in database |
$18$ | 18.0.1537444382985911756123948985090048000000000000.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | nonsplit | nonsplit | add | ss | ord | ord | ord | ss | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 1 | 1 | - | 1,1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 1 | 0 | - | 0,0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.