Properties

Label 47040.i
Number of curves $4$
Conductor $47040$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 47040.i have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 47040.i do not have complex multiplication.

Modular form 47040.2.a.i

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + q^{9} - 4 q^{11} + 6 q^{13} + q^{15} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 47040.i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
47040.i1 47040r4 \([0, -1, 0, -97281, 6534081]\) \(26410345352/10546875\) \(40659494400000000\) \([2]\) \(442368\) \(1.8852\)  
47040.i2 47040r2 \([0, -1, 0, -44361, -3510135]\) \(20034997696/455625\) \(219561269760000\) \([2, 2]\) \(221184\) \(1.5386\)  
47040.i3 47040r1 \([0, -1, 0, -44116, -3551834]\) \(1261112198464/675\) \(5082436800\) \([2]\) \(110592\) \(1.1920\) \(\Gamma_0(N)\)-optimal
47040.i4 47040r3 \([0, -1, 0, 4639, -10889535]\) \(2863288/13286025\) \(-51219253009612800\) \([2]\) \(442368\) \(1.8852\)