Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2+7315x+35479\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z+7315xz^2+35479z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+117045x+2387718\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
Conductor: | $N$ | = | \( 46818 \) | = | $2 \cdot 3^{4} \cdot 17^{2}$ |
|
Discriminant: | $\Delta$ | = | $-25655387613858$ | = | $-1 \cdot 2 \cdot 3^{12} \cdot 17^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{3375}{2} \) | = | $2^{-1} \cdot 3^{3} \cdot 5^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.2623258207121464151005538064$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.2528931399840713164194587395$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.4265653296335434$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.5620881644483138$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.40842250729342009716407123761$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L(E,1)$ | ≈ | $3.6758025656407808744766411385 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $9$ = $3^2$ (exact) |
|
BSD formula
$$\begin{aligned} 3.675802566 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{9 \cdot 0.408423 \cdot 1.000000 \cdot 1}{1^2} \\ & \approx 3.675802566\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 90720 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$3$ | $1$ | $II^{*}$ | additive | 1 | 4 | 12 | 0 |
$17$ | $1$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2G | 8.2.0.1 |
$3$ | 3B | 3.4.0.1 |
$7$ | 7B | 7.8.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 8568 = 2^{3} \cdot 3^{2} \cdot 7 \cdot 17 \), index $768$, genus $21$, and generators
$\left(\begin{array}{rr} 7855 & 3570 \\ 6783 & 715 \end{array}\right),\left(\begin{array}{rr} 1 & 1938 \\ 3570 & 4285 \end{array}\right),\left(\begin{array}{rr} 3809 & 1904 \\ 6664 & 1905 \end{array}\right),\left(\begin{array}{rr} 6070 & 5865 \\ 3213 & 5713 \end{array}\right),\left(\begin{array}{rr} 1 & 5712 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 4999 & 6834 \\ 1428 & 7855 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 5712 & 1 \end{array}\right),\left(\begin{array}{rr} 7141 & 3570 \\ 3213 & 3571 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 7056 & 1 \end{array}\right),\left(\begin{array}{rr} 1513 & 7056 \\ 1512 & 1513 \end{array}\right),\left(\begin{array}{rr} 1 & 1224 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2857 & 5712 \\ 2856 & 5713 \end{array}\right),\left(\begin{array}{rr} 2991 & 6902 \\ 7616 & 3399 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4998 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 3570 \\ 0 & 6121 \end{array}\right),\left(\begin{array}{rr} 3023 & 0 \\ 0 & 8567 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 1428 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[8568])$ is a degree-$1228027723776$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/8568\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 23409 = 3^{4} \cdot 17^{2} \) |
$3$ | additive | $2$ | \( 578 = 2 \cdot 17^{2} \) |
$17$ | additive | $146$ | \( 162 = 2 \cdot 3^{4} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3, 7 and 21.
Its isogeny class 46818.k
consists of 4 curves linked by isogenies of
degrees dividing 21.
Twists
The minimal quadratic twist of this elliptic curve is 162.b4, its twist by $-51$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-51}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.648.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.3359232.4 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.2.57305232.5 | \(\Z/3\Z\) | not in database |
$6$ | 6.6.32234193.1 | \(\Z/7\Z\) | not in database |
$6$ | 6.0.6188965056.4 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$12$ | 12.0.9351388785251241.1 | \(\Z/21\Z\) | not in database |
$18$ | 18.0.9965387957417758421534202325150464.1 | \(\Z/9\Z\) | not in database |
$18$ | 18.2.1638542918034376261055420974497792.1 | \(\Z/6\Z\) | not in database |
$18$ | 18.6.8779915327258960589503070208.1 | \(\Z/14\Z\) | not in database |
$18$ | 18.6.100008723024559097964808409088.1 | \(\Z/21\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | add | ss | ord | ord | ord | add | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 4 | - | 0,0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
$\mu$-invariant(s) | 0 | - | 0,0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.