Properties

Label 466752.eb
Number of curves $4$
Conductor $466752$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("eb1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 466752.eb

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
466752.eb1 466752eb4 \([0, 1, 0, -160617801217, -24776466871606177]\) \(1748094148784980747354970849498497/887694600425282263291392\) \(232703813333885193628258664448\) \([2]\) \(1815478272\) \(4.9677\)  
466752.eb2 466752eb3 \([0, 1, 0, -21971478017, 689374449575007]\) \(4474676144192042711273397261697/1806328356954994499451382272\) \(473518140805610078064183154311168\) \([2]\) \(1815478272\) \(4.9677\) \(\Gamma_0(N)\)-optimal*
466752.eb3 466752eb2 \([0, 1, 0, -10092914177, -382734832655265]\) \(433744050935826360922067531137/9612122270219882316693504\) \(2519760180404520830027301912576\) \([2, 2]\) \(907739136\) \(4.6211\) \(\Gamma_0(N)\)-optimal*
466752.eb4 466752eb1 \([0, 1, 0, 57301503, -18331939527585]\) \(79374649975090937760383/553856914190911653543936\) \(-145190266913662344506621558784\) \([2]\) \(453869568\) \(4.2746\) \(\Gamma_0(N)\)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 0 curves highlighted, and conditionally curve 466752.eb1.

Rank

sage: E.rank()
 

The elliptic curves in class 466752.eb have rank \(0\).

Complex multiplication

The elliptic curves in class 466752.eb do not have complex multiplication.

Modular form 466752.2.a.eb

sage: E.q_eigenform(10)
 
\(q + q^{3} + 2q^{5} + q^{9} - q^{11} - q^{13} + 2q^{15} - q^{17} - 8q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.