Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-x^2-4359588x-3504766896\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-x^2z-4359588xz^2-3504766896z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-69753411x-224374834754\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(9602088/3481, 14882262756/205379)$ | $8.9374874615821502826995324331$ | $\infty$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 466578 \) | = | $2 \cdot 3^{2} \cdot 7^{2} \cdot 23^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-6789885691609939968$ | = | $-1 \cdot 2^{16} \cdot 3^{3} \cdot 7^{2} \cdot 23^{8} $ |
|
| j-invariant: | $j$ | = | \( -\frac{88445874699}{65536} \) | = | $-1 \cdot 2^{-16} \cdot 3^{6} \cdot 7^{4} \cdot 13^{3} \cdot 23$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.5472289594522530791835411975$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.14207194817675968838733079018$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0744072551003627$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.403413186828781$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $8.9374874615821502826995324331$ |
|
| Real period: | $\Omega$ | ≈ | $0.052238282927821284851019387298$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 12 $ = $ 2\cdot2\cdot1\cdot3 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $5.6025479841838035909487721619 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.602547984 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.052238 \cdot 8.937487 \cdot 12}{1^2} \\ & \approx 5.602547984\end{aligned}$$
Modular invariants
Modular form 466578.2.a.w
For more coefficients, see the Downloads section to the right.
| Modular degree: | 21620736 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{16}$ | nonsplit multiplicative | 1 | 1 | 16 | 16 |
| $3$ | $2$ | $III$ | additive | 1 | 2 | 3 | 0 |
| $7$ | $1$ | $II$ | additive | -1 | 2 | 2 | 0 |
| $23$ | $3$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 6.2.0.a.1, level \( 6 = 2 \cdot 3 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 5 & 2 \\ 5 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 5 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 2 \\ 4 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[6])$ is a degree-$144$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/6\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 77763 = 3 \cdot 7^{2} \cdot 23^{2} \) |
| $3$ | additive | $6$ | \( 51842 = 2 \cdot 7^{2} \cdot 23^{2} \) |
| $23$ | additive | $200$ | \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 466578.w consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 466578.cc1, its twist by $-23$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.